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ABSTRF-CT 

This   paper   cons is t s   o f  two p a r t s .   I n   t h e  f i r s t  p a r t  of t he   pape r  

a n e w  and general   formulat ion of t h e  dynamical  problems  associated w i t h  

t h e  powered f l i g h t   o f  a f l ex ib l e ,   va r i ab le -mass   rocke t   w i th   i n t e rna l  

flow i s  presented.  The fo rmula t ion   compr i se s   s ix   o rd ina ry   d i f f e ren t i a l  

equat ions   for   the   r ig id-body  mot ion  and three p a r t i a l   d i f f e r e n t i a l  equ- 

a t i o n s   f o r   t h e   e l a s t i c   m o t i o n ,   w i t h   t h e   a p p r o p r i a t e   b o u n d a r y   c o n d i t i o n s .  

The   r ig id-body  mot ion   cons is t s   o f   th ree   t rans la t ion$  and three r o t a t i o n s ,  

whereas  the elastic motion is def ined  by one   longi tudina l  and two f l ex -  

u ra l   d i sp l acemen t s - ,   t he   l a t t e r   abou t  two or thogonal   t ransverse   axes .  

The d i f f e r e n t i a l   e q u a t i o n s  are non l inea r   and ,   i n   add i t ion ,  t hey  possess  I 
t ime-depecdent   coef f ic ien ts   due   to   the  m a s s  v a r i a t i o n .  The formulat ion 

conta ins  marly of t h e   r o c k e t  dynamics  problems  investigated  heretofore 

a s   s p e c i a l  cases, and  should  prove  superior  when s e v e r a l  effects nus t   be  

considered  s imultaneously.   Solut ions  of   the   complete   equat ions  can  be 

obta in& only numerically by  means of a high-speed  computer.  For a crit- 

ical   examinat ion  of  the dynamic c h a r a c t e r i s t i c s  of variable-mass  bodies,  

i n   t h e  second  par t  of. t he   pape r   an   ana ly t i ca l   so lu t ion  of t h e  boundary- 

value  problems  with  t ime-dependent   coeff ic ients   associated  with  the  long-  

i t u d i n a l  and t r ansve r se   v ib ra t ions   o f  an ax ia l ly   symmetr ic ,   var iab le-  

mass,   spinning  rocket,  is obtained  under   cer ta in   assumptions.   This  

pape r   s c ru t in i zes  the concept  of  normal-xode  vibration  for a va r i ab le -  

mass boos t   vehic le .  Its re su l t s   can   be   u sed  to check  the  measure of 

v a l i d i t y  of the   so-ca l led  "time-slice" procedure  based on t h i s  concepk, 

p a r t i c u l a r l y   i n   t h e  case o f   s o l i d - f u e l   r o c k e t s   f o r  which t h e  mass v a r i -  

aeion i s  q u i t e   r a p i d .  



1 Introduction 

The  behavior  of  a  rocket  in  flight  has  been  studied  extensively. 

Research  in  the  area  of  rocket  dynamics  has  been  concerned  with  mathe- 

matical  models  ranging  from  a  rigid,  variable-mass  rocket  to a flexible, 

constant-mass  one,  during  the  unpowered  as  well  as  the  powered  flight 

of  the  vehicle.  Most of these  mathematical  models  must  be  regarded as 

treating  special  aspects  of a more  general  problem. 

The  treatment  of  a  missile  as  a  rigid  body  of  time  dependent  mass 

has  been  adequately  covered  by  many  investigators,  including  Grubin, 

Dryer,  and  Leitmann.3 The ballistic  trajectories  of  spin-and  fin- 

stabilized  rigid  bodies  are  treated  in  a  book  by  Davis,  Follin,  and 

Blitzer. 
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A considerable  amount  of  effort  has  been  devoted  to  the  analysis 

of  an  elastic  body  subjected  to  longitudinal  acceleration. For example, 

Seide5  has  treated  the  effect  of  both a compressive  and a tensile  force 

on  the  frequencies  and  mode  shapes of transverse  vibration  of a con- 

tinuous  slender  body.  Others,  such as  BeaL,  have  been  concerned  with 

the problem of buckling  instability of a  uniform  bar  subjected  to  an  end 

thrust  as  well  as  with  the  change  in  the  body  natural  frequencies  as a 

result  of  that  thrust.  These  investigations  regard  the  mass of the  body 

as constant in time. 

A series  of  reports  by  Miles,  Young,  and  Fowler7  offers  a  compre- 

hensive  treatment  of  a  wide  range  of  subjects  associated  with  the 

dynamics of missiles,  including  fuel  sloshing.  Aqain  the  mass  variation 

is  not  accounted  for. 

I. . . .. . .. 

* See  references at the end of this  paper. 
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4 Attempts  have  been  made  to  consider  simultaneously  the  mass  var- 

iation  and  missile  flexural  elasticity by investigators  such  as  Birnbaum 

and  Edelen.  Both  were  concerned  with  solid-fuel  rockets  and  neither 

of  them  included  the  axial  elasticity of  the  missile. On  the  other  hand, 

Price'' concerned  himself  with  the  internal flow  in  a  solid-fuel  rocket 

and  ignored  entirely  the  vehicle  motion.  More  recently  an  attempt  to 

synthesize  the  problem of rocket  dynamics has-been made  by  Meirovitch 

and  Wesley.  This  latter  work  accounts  for  the  mass  variation,  rigid- 

body  translation  and  rotation,  and  axial  and  transverse  deformations  but 

it  assumes  the  motion to be planar,  which  exludes  spinning  rockets. 

This  paper  can be regarded as  consisting  of  two  parts:  general 

8 

formulations  (Sections 2 through 5)  , and  solutions  (Section 6). The  first 

part  of  this  investigation  represents  an  attempt  to  unify  the  various 

aspects  of  missile  dynamics probler,Is into  one  formulation.  Section 2, 3 ,  

and 4 derive  general  equations  of  motion  for  a  flexible  variable-mass 

rocket  with  internal  gas  flow. The motion  is  defined  by  three  rigid-body 

translations,  three  rigid-body  rotations,  and  one  axial  and  two  transverse 

elastic  displacements. The internal  gas  fiow  effects  are  reduced to 

equivalent  forces  identified  as  the  Coriolis  force,  the  force  due  to  the 

unsteadiness  of  the  gas  flow  relative  to  the  vehicle,  and  the  reactive 

force. In  Section 5 the  elastic  motion  is  specified  by  regarding  the 

rocket  as a bar  undergoing one axial  and  two  flexural  displacements. 

The complete  formulation  reduces  to  six  ordhnary  differential  equations 

for  the  rigid-body  notion,  and  three  partial  differential  equations 

with  the  associated  boundary  conditions  for  the  elastic  motion. The 

differential  equations  are  nonlinear  and,  in  addition,  they  possess 

time-dependent  coefficients  due  to  the  mass  variation.  This  general 
L 

- 
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formulation  contains  many  of  the  previously  mentioned  investigations 

as  special  cases.  In  fact,  it  represents  an  extension  and  generalization 

of  Reference 11 by  considering  the  motion  as  three-dimensional  rather 

than  planar,  thus  enabling  the  treatment of spinning  rockets.  This  nec- 

essitates  a  different  approach  to  the  problem  formulation,  as  the  rotation 

is expressed  in  terms  of  quasi-coordinates  rather  than  Euler's  angles. 

No closed-form  solution  of  the  complete  equations  can  be  anticipated. 

- 

As an  application of the  general  formulation,  this  paper  examines 

closely  the  nature  of  the  vibrational  motion  of  variable-mass  systems 

as  opposed  to  constant-mass  systems.  Closed-form  solutions are  souqht as 

they  allow  for  easier  physical  interpretation.  Section 6 presents  analyti- 

cal  solutions  for  the  boundary  value  problems  with  time-dependent  coeffi- 

cients  associated  with  the  longitudinal  and  transverse  vibrations of an 

axially  symmetric,  variable-mass,  spinning  rocket  in  vacuum.  The  conclu- 

sion  is  that  normal-mode  vibration  in  the  commonly  accepted  sense does not 

exist  for  variable-mass  systems. The analysis  should  provide  a  check of 

the  extent  to  which  approximate  methods  based  on  the  normal-mode  concept, 

such  as  the  "time-slice"  method,  can  be  used f o r  variable-mass  systems. 

This  question  may  prove  especially  interesting  when  the  mass  variation 

is rapid  as  in  the  case of solid-fuel  rockets. 

2. Equations  of  Motion  for  a  General  Variable-Mass  System 

By a  variable-mass  system we understand  a  system of chanqing  compo- 

sition. To clarify  this  statement we envision a control  volume  in  space 

and,  assume  that  the  identity  of  the  matter  within  the  control  volume may 

change  with  time,  although  the  shape of the  control  volume  is  fixed.  When 

the  system  composition  changes, w e  cannot  equate  the  time-derivative of 

the  sum  of  momenta  associated  with  the  particles  to  the  sum  of  the  time 
. 



der iva t ives ,   because   the   sumnat ion   involves   d i f fe ren t  sets o f   p a r t i c l e s  

a t   d i f f e r e n t  t i m e s .  I n  t h i s  case, the proper   p rocedure   for   ob ta in ing   the  

equations  of  motion i s  t o  w r i t e  t he   fo rce   equa t ion  i n  t h e  form = e*, 
where the rate of change  of the momentum fi i s  der ived  by  a l imi t ing   p rocess  

c o n s i s t i n g  of c a l c u l a t i n g  p a t  two d i f f e r e n t   i n s t a n t s ,  a t i m e  i n t e r v a l  

A t  a p a r t ,   d i v i d i n g  t h e  d i f f e rence   o f  t h e  two va lues  by A t ,  and l e t t i n g  

A t  -f 0.  I n  so doing, w e  ensu re  t h a t  t h e  same t o t a l  m a s s  i s  involved,  al-  

- 

- 
I 

- 

though a t  one t i m e  it i s  e n t i r e l y   i n s i d e   t h e   c o n t r o l  volume  and a t   t h e  

o t h e r  t i m e  p a r t  of t h e  mass i s  ou t s ide .  

L e t  us   consider  a system  occupying a c e r t a i n  volume i n   s p a c e  a t  

t i m e  t, namely t h e  c o n t r o l  volume enclosed by t h e  c o n t r o l   s u r f a c e  shown 

i n  s o l i d   l i n e   i n   F i g u r e  I. I f   t h e   c o n t r o l  volume i s  f i x e d   i n   a n   i n e r -  

t i a l   s p a c e ,   t h e n  it is  shown in   Reference  1 2  (p. 9 6 )  t h a t  t h e  f o r c e  equ- 

a t i o n  has t h e  form 

where F and are t h e  r e s u l t a n t s   o f  t h e  su r face  and  body f o r c e s ,  

r e s p e c t i v e l y ,   a c t i n g  upon the  system. 
-S 

Next w e  cons ider  t h e  case i n  which t h e   c o n t r o l  volume t r a n s l a t e s  

and r o t a t e s   r e l a t i v e   t o  an i n e r t i a l   s p a c e .  W e  s h a l l  assume t h a t   p a r t  

of t h e  mass is s o l i d l y   a t t a c h e d   t o   t h e   c o n t r o l  volume,  hence t r a n s l a t i n g  

and   ro ta ' i ing   in   space   wi th  it, and  def.ine a system of body axes   x ,y ,z  

f i x e d   w i t h   r e s p e c t   t o  t h e  cont ro l   vo luner  so t h a t   t h e   f o r c e   e q u a t i o n   c a n  

be w r i t t e n  

* A wavy l i n e  under   the  symbol denotes a vec to r   quan t i ty   o r   ope ra t ion .  

- 
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in  which a, is  the  absclute  acceleration  of  the  mass  elexent dM, so is 
the  acceleration of the or'igin 0 of  the  system x, y, z, 3 is  the  a-gular 

velocity  vector of axes x, y, z ,  and 2 is the  position of dM relative to 

these  axes.  Recognizing  that  if  the  body  axes  were  fixed  in  the  izertial 

space  only  the  term 2 dM would  survive,  where Mf is  the mass 
moving  relative  to  the  control  volume,  and  considering E q .  (l), we  can 

write  the  force  equation  in  the  form 

{Mf 

where  the  partial  derivative a/at  is to be  calculated  by  regarding  axes 

x ,  y, z as  fixed. Next we introduce  the  following  equivalent  forces 

( 4 )  

where F is  recognized as the  Coriolis  force, 

unsteadiness  of  the  relative  motion,  and I?R is  Yeferred  to  as  a  reactive 

" force.  With  this  notation, Eq. (3) becomes 

-C zu is  a force  due to the 

gs + g B  + Kc + gu + ZR - - lM [go + 5 E + 2 X(L 5 5) I ( 5 )  

The  terms on the  right  side of Eq. (5) nay be  regarded  as  pertaining  to 

a rigid  body of instantaneous mass M. 

In a  similar  manner,  the  torque  equation  about  the  origin 0 can be 

written 

"s ' N B i N C i ? ( I I t N R - j l l l r I [ 8 0 ' ~ X E i V I X ( W E E )  - I dM ( 6 3  .I 
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. 
where 
a 

L 

The significance  of  the  various  torques  is  self-evident.  Moreover,  the 

expression  for N can  be easily  explained  by  recalling  that a/at implies 

a  time  rate of change  with  axes  x,y,z  regarded  as  fixed. 
-U 

The above  equations  must  be  supplemented  by  the  continuity  equation 

which  expresses  the  fact  that  the  net  efflux  rate  of  mass  across  the  con- 

t r o l  surface  must  equal  the rate of mass  decrease  inside  the  control  vo- 

lume. 

Equations (5) and (6) can  be  given  an  interesting  physical  inter- 

pretation  by  recalling  that  the  systen  comprises  one  part  solid  and 

another  part  of  changing  composition,  and  observing  that  the  right  sides 

of  these  equations  represent  the  motion of the  system  as  if it were 

rigid  in  its  entirety.  Hence,  Eqs. (5) and (6) may be regarded  as  the 

equations  of  motion of a  fictitious  rigid  body  of  instantaneous  mass M, 

provided  that  the  actual  surface  and  body  forces  acting  upon  the  system 

are  supplemented  by  three  equivalent  forces,  namely  the  Coriolis  force, 

the  force  due  to  the  unsteadiness  of  the  relative  motion,  and  the  re- 

active  force.  This  is  the  substance  of a statement  referred  to  as  the . 

7 



"principle  of  solidification  for  a  system  with  changing  composition 

with  a  hard  shell".  (See'  Reference 13, p. 13). 

3 .  The Rigid-Body  Motion of  a  Rocket I 

The  formulation  of  the  preceding  section is ideally  suited  for 

treating  the  problems  associated  with  the  motion  of  a  rocket.  Although 

a  rocket  is  in  general  flexible,  a  first-approximation  solution  for  its 

dynamic  behavior  may be obtained  by  regarding it as rigid. The solution 

can  be  refined  by  assuming  that  because  of  flexibility  the  rocket  un- 

dergoes  certain  elastic  displacements.  The  mathematical  model of the 

rocket  is  assumed  to  comprise a long  cylindrical  shell  open  at  the  aft 

end  and  closed at the  fore  end. The inner  part of the  rocket  consists 

of  the  propellant  which  surrounds  a  cylindrical  cavity  whose  axis  coin- 

cides  with  the  rocket's  longitudinal  axis,  namely  axis  x  in  Figure 2. 

The cavity  plays  the  role  of  the  combustion  chamber  as  it  contains  the 

burned  gas  which  flows  relative  to  the  shell  until  expelled  through  a 

nozzle  at  the  aft  end. This  mathematical  model  is  more  representative 

o f  a  solid-fuel  rather  than  liquid-fuel  rocket.  We  shall  consider  first 

the  case in which  the  rocket  shell  is  rigid. 

For  most  rockets  the  mass  variation  does  not  cause  the  vehicle 

center  of  mass  to  shift  appreciably  relative  to  the  body  (see,  for  ex- 

ample,  Reference 13, p. 15); when  the  fuel  rate  of  burning is uniform 

along  the  entire  rocket it does  not  shift  at a l l .  Hence, we shall 

assume  that  the  vehicle  mass  center  is  fixed  relative  to  the body  axes 

x,y,z  and  choose  the  origin 0 of these  axes  to  coincide  with  the  mass 

center so that, by the  definition of the  center  of  mass,  we  have 

I, - r d M = O  ( 9 )  

8 



”s 
F + ZB + sc + gU + gR = Msao 

and 

where 

L = (Ixx wx - I w - Ixz w z ) &  + ( - I w + I - XY Y XY x  yy wy - Iyz w z ) L  

+ ( - Lxz wx - I w + Izz w z ) &  YZ Y (12 1 

is  the  angular  momentum  of  the  vehicle  about  the  origin 0 and  is 

the  rate  of  change of L, due to  the  change in the body  angular  velocity 

relative to the  body  axes. It is  obtained  by  replacing  the  components 

of w, by the components of 5 in Eq. (12) . The quantities 

are  the  instantaneous  moments  and  products of inertia  of  the  vehicle 

about  the  body  axes.  Equations (10) and (11) indicate  that  the  rigid- 

body  translational  and  rotational  motions  are  uncoupled. We  note  that 

in our  case  the  moments  of  inertia  are  time-dependent  because of the 

mass  variation. Of course, Eq. (11) can  be  simplified  considerably 

-by  choosing  x,y,z  to  coincide  with  the  principal  axes. 
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It remains to derive  explicit  expressions  for  the  actual  and 

equivalent  forces  and  torques.  The  surface  force  consists of the 

aerodynamic  force  on  the  vehicle  wetted  area  and  the  pressure  force 

across  the  exit  area.  Denoting  by cf; the  aerodynamic  force per  unit 
of  the  wetted  area  Aw, by  pe the  pressure  across  the  exit area.Ae, and 

by  pa the  atmospheric  pressure,  the  surface  force  takes  the  form 

Assuming  that  the  gravitational  field is uniform,  the  body  force is 

simply 

EB = 1, ,.. mg dx = Mg - 
where L is  the  length of the  rocket,  m  the  distributed  mass,  and g 

the  acceleration  due to gravity.  Since  the flow everywhere is along 

the  x-axis,  with  the  possible  exception  of  the  exit  point, we have 

- 

x = -  v(x,y,z,t)i = - v(x,t)& 

where we assumed  that  the  flow  across  the  cross-sectional  area is 

uniform, so that  the  Coriolis  force  can  be  written 

where  use  has  been  made of the  continuity  equation,  namely 

10 



I from  a  point x to  the  closed  end of the  vehicle. In Eq. (18), mf 

denotes  fluid  mass  per  unit  length  at  point x, b  is  the  distance  from 

the  vehicle  mass  center t o  the  closed end, m is  the  mass  rate  of  change 

per unit  length, and 5 is  a  dummy  variable of integration.  Similarly, 

the  force  due  to  the  flow  unsteadiness  assumes  the  form 

Finally,  the  reactive  force  can  be  written 

where  the  symbol  x  indicates  that the quantity  vymf  is  to be evaluated 

at the  exit  point. The integrand  in  Eq. (20) can be easily  derived 

by  assuming  one-dimensional  flow  along  the  x-axis. It will be noticed 

that  the  expression  makes  allowance  for  possible  abrupt  changes  in  the 

flow  pattern,  as  would  occur  if  the  rocket  engine  were  to be gimbaled 

at a  certain  angle  with  respect  to  the  x-direction.  This  is  reflected 

by  the  second  term  in  the  integrand,  in  which  6(x)is  a  spatial  Dirac's 

delta  function.  Letting  the  flow  direction  at  the  exit  be  defined  with 

respect to axes  x,y,z  by the  direction  cosines RxR, R yR, R z R ,  respect- 

ively, and  using  the  continuity  equation,  Eq. (181, the  reactive  force 

becomes 

e 

gR = - Mv  (xe,t) (RxR& + EyRL + RzR$) (21) 

where 2 represents  the  total  mass  rate  of  change  which,  of  course, 
is a  negative  quantity. 
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where -FA denotes   the  aerodynamic  force 

and ET i s  t h e  "eng ine   t h rus t "  

In  an  analogous  manner, w e  ob ta in   t he   t o rques  

= o 

i n  which zs i s  t h e   r a d i u s   v e c t o r  t o  a poi.nt on t h e   r o c k e t  surface and 

2 i s  t h e   d i s t a n c e   f r o m   t h e   o r i g i n  0 t o  t h e   e x i t   p o i n t .  

Equations (10 )  and (ll), i n   con junc t ion   w i th   t he   expres s ions  f o r  

the   ac tua l   and   equiva len t   forces   and   to rques   der ived   above ,   possess  

t ime-dependent   coeff ic ients  so t h a t  a c losed-form  solut ion of t h e  

problem i s  no t   poss ib l e ,   excep t   fo r  some simple s p e c i a l  cases. 

4.  The Equations of Motion of a F l e x i b l e  Rocket  

When the  rocket   casing  can  undergo  e las t ic   deformations  the  prohlom 
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requires  further  attention.  The  case  in  which  the  rigid-body  motion 

is  planar  and  the  elastic  m.2tion  consists of axial  and  transverse 

vibrations  has  been  treated  by  Meirovitch  and  Wesley  (Reference 11). 

The Present  investigation  represents an extension  and  generalization 

of  that  work. 

Let us  consider  a  rocket  translating  and  rotating  relative to 

the  inertial  space X,Y,Z, as  shown  in  Figure 2. As the  control  volume, 

we  consider  the  volume  occupied  by  a  rocket  element  of  unit  length  when 

the  vehicle  is at rest relative  to  the  body  axes x,y,z. Figure 3 shows 

the  corresponding  element.  Because the  rocket  shell  is  elastic,  the 

entire  mass  associated  with  the  control voldrne in  question  can  move 

relative to that  volume. The rocket  case  and  unburned  fuel  are  assumed 

to move  together  and  their  motion  is  different  from the  motion  of  the 

burned  fuel, so that it will  prove  convenient to  denote the  motions  and 

mass  associated  with  the  case  element  by  the  subscript  c  and  the  ones 

related  to  the  burned  fuel  element  by  the  subscript f. In analogy  with 

Eq. (2),  and  considering the  rocket  element  shown  in  Figure 3 ,  we can 

write  the  force  equation of motion  in  the  form 

where -fs and -fB are  distributed  surface  and  body  forces,  respectively, 

is  the  elastic  motion  of  a point  inside  the  case  element,  and yf is XC 
the  fluid  velocity  relative  to  the  body  axes.  We  shall  assume  that  the 

elastic  motion  is  the  same  for  the  entire  case  element,  and a similar 
* 

13 



.. 
statement  can  be  made  concerning  the  velocity  of  the  fluid  element. 

Introducing  the  notation 

where u, represents  the  elastic  displacement  vector,  and v, is  the  vel- 
ocity  of  the  fluid  relative  to  the  case, we can  rewrite Eq. (26) as 

follows 

where  m = m + mf  is  the  mass  of the  rocket  per  unit  length.  Moreover, 
C 

the  radius  vector 5 has  the  expression 

in  which  ux,  u  and uz are  the  elastic  displacements o€ the  case el- 

ement  in  the x, y ,  and z directions,  respectively. A slight  simplifi- 

cation  can  be  achieved by assuming  that  the  rocket  possesses  axial sym- 

metry  as  defined  by 

Y' 

y dm = z d m =  0 i, 
so that  introducing  the  "average"  radius  vector z whose  definition is 

14 



, 
Eq. (28 )  assumes t h e  form 

gs + gB = [50+5+2z 5 E+ " -  x E+ " w X (E 5 E) J m + ( ~ + 2 2  5 y)mf (32) 

The surface  forces   comprise   the  aerodynamic  forces  on t h e   s u r f a c e  

o f   t h e   r o c k e t ,  as w e l l  as the   fo rces   due  t o  stresses on t h e   r o c k e t  

s h e l l  and f l u i d   p r e s s u r e .  The la t ter  twotypes of f o r c e s  are a c t i n g  

on t h e   c r o s s - s e c t i o n a l   s u r f a c e s  so tha t ,   a l t hough   t hey  are i n t e r n a l  

t o  the   rocke t ,   they   mus t  be cons idered   sur face   forces   due  t o  t h e   n a t u r e  

of   the   chosen   cont ro l  volume. Body f o r c e s ,  as i n   t h e   p r e c e d i n g   s e c t i o n ,  

are due t o   g r a v i t y   a l o n e .  

Invoking  the  analogy w i t h  Eq. ( 5 ) ,  w e  can rewrite Eq. (32) t o  

read  

-s -3 f +f +_fC+f +,fR = [so - -U + i i + ~ g z $ + ; x g + w x  " " (zcog,]m 

- - (go + g) m = s m  (33) 

where a, i s  t h e   a b s o l u t e   a c c e l e r a t i o n   c o n s i s t i n g   o f   t h e   a c c e l e r a t i o n  

a o f   t h e   o r i g i n  0 and t h e   a c c e l e r a t i o n  5 of   t he  case element rela- -0 

t i v e  t o  t h e  body axes.  Moreover 

f = -  
-C 2s 5 Pf 

-fu - at (Pf) - a 

f = - -  
-R a (vxmf) + A ( v p f )  6 (x + a) ax 

are t h e  C o r i o l i s   f o r c e ,  the  f o r c e   d u e   t o   t h e   u n s t e a d i n e s s   o f   t h e   f l u i d  

f l o w  r e l a t i v e   t o   t h e  case, and t h e   r e a c t i v e   f o r c e ,   r e s p e c t i v e l y ,  a l l  

pe r   un i t   l eng th   o f   rocke t .  

- 

(34) 
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If we  express  R  in  terms of components  along  axes  x,y,z,  then -0  

the  position of the  case  element at any  time  is  given  by 

R, = go + = (ROx+x+ux) Y i + (R  OY +u Y ) - j + (ROz+uz)k (35) 

Recalling  that  the  unit  vectors  i, j, and & rotate  with  angular vel.- 
ocity E, the  absolute  acceleration  of  the  case  element  can  be  written 

in  the  form 

- -  

a = a   + z = a i + a j + a z k  - -0 x- y- (36) 

where 

a X = R0x-l-~x+2 wy(&oz+;z) - wz (Roy 
.. +; )I + & (ROz+uz)-  Gz(ROy 

Y +u ) 

+ wx w (R +U ) + wx w z  (ROz+uz)- ( w 2  + w z )  2 (ROx+x+ux) Y OY Y Y 

a = K' +ii +2 +; ) - + A z  (ROi+x+ux) - Ax (ROz+uZ) 
Y OY Y 

( 3 7 )  

+ w w (RoZ+uz)+ w ~ ~ ~ ( R ~ ~ + X + U ~ ) -  (wx 2 + w z )  2 (Roy 
Y Z  

+U 1 

.* .. 
a = R ~ ~ + U ~ + ~  [ wx (key+; - (K +G ] + (R +u - h ( R  +x+ux) z Y y ox x O Y   Y O X  

-I- wXwz (ROx+x+ux) + w w (R fu ) - (w; + w 2 ) (ROz+uz) Y Z  OY Y Y 

We  note  that  the  terms  involving Rex, R and their  time  derivatives 

are  associated  with  the  motion of the  origin 0, whereas  the  remaining 

terms are  due to the  motion of the case  element  relative  to 0. 

Oy' ROz 
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- 
Simi la r ly ,   u s ing  Eq. ( 2 8 ) '  the   to rque   equat ion   about   po in t  0 

f o r  t h e   r o c k e t  elcmeEt i n  ques t ion   takes   the   form 

where 

+ ( - i  w - i  xz x yzwy + izz z w 1 %  (39) 

i s  t h e   a n g u l a r  momentum o f   t h e  m a s s  element m abou t   t he  body axes   x ry , z  

i n  which 

are recognized as t h e   a s s o c i a t e d  moments and  products of i n e r t i a .  

Moreover, i s  obtained  from Eq. ( 3 9 )  by r ep lac ing  wx, w w by 

LI ti & respec t ive ly .   Equat ion   (38)   can   be   rewr i t ten  as 
Y' z 

x'  y' 2 '  
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where t h e   t o r q u e s  

ZC 

ru - - - E 5 ;i-s(ymf) 

= - 2E 5 (w, x, y)mf 

- a  

n = -  E 5 ax(vynf) a - [ E x, A (vym,) ] 6 (x + a )  
-R 

fo l low  d i rec t ly   f rom E q s .  ( 3 4 ) .  

Equations ( 3 3 )  and ( 4 1 )  must  be  supplemented by t h e   c o n t i n u i t y  

equat ion ,  Eq. (18) . 

5. The Equat ions  for   the  Axial   and  Transverse  Vibrat iocs  of a Rocket. 

L e t  u s  cons ide r   t he   rocke t  of the   p reced ing   s ec t ion   i n  which  uy is 

t h e   a x i a l  e las t ic  displacement and u and uz are t h e  e las t ic  t r a n s v e r s e  
Y 

d i sp l acemen t s   i n   t he  y and z d i r e c t i o n s ,   r e s p e c t i v e l y .  Assuming 'chat t h e  

e las t ic  displacements  ux, u uz  and the   angu la r   ve loc i ty  components 

w w as w e l l  as t h e i r  t i m e  d e r i v a t i v e s ,  are small q u a n t i t i e s ,  we 

can   in tegra te   Eqs .  ( 3 3 )  and ( 4 1 )  and  obtain 

<. 

Y '  

y'  z' 



* 

Comparing  Eqs. (10) and (43) on the one hand, and  Eqs. (11) and (44) 

on the  other  hand, we conclude  that  the  elastic  motion  is  inertially  un- 

coupled  from  the  rigid  body  motion a and 2, provided  the  x-axis  is -0 
chosen so that  the  following  relations  are  satisfied 

xu  m  dx = x6 m  dx = xii m  dx = 0 

xu  m dx = xri m  dx = xi; m  dx = 0 

We  shall  assume  that  this  is  the  case,  and  indeed  Eqs. (45) imply  that 

the  elastic  modes  of  deformation  are  orthogonal,  with  respect  to  mass, 

to the  rigid  body  modes  of  displacement,  namely  the  translation  and 

rotation  of  the  vehicle  as a whole. In the  event the forces  and  torques 

on the  vehicle  do  not  depend  on  the  elastic  displacements  the  problem 

can  be  solved  in  two  stages. In the  first  stage we solve  for  the  rigid 

body  motion so and E from  Eqs. (10) and (11) and  then,  considering  a 

and  as  known,  turn  to  Eqs. (33) through (37) for the  elastic  motion 2. 
-0 

Equations ( 3 3 )  and (341, representing  the  equations  of  motion f o r  

the  three  components  ux,  u  uZ  of  the  elastic  displacement u,, are  of 
a  general  form  and,  before we can  attempt  their  solution, we must  specify 

the  nature  of  the  surface  force fs.  T h i s  force  depends  not  only on the 

external  aerodynamic  forces  but  also  on  the  internal  stresses  in  the 

shell  and  fluid  pressure.  Moreover, we must  also  know  the  fluid  flow 

characteristics, as can  be  concluded  from  Eqs. (34). 

Y' 

* 
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A s  f a r  as t h e   e l a s t i c   m o t i o n  i s  concerned, t h e  v e h i c l e   s h e l l  

i s  assumed t o  behave l i k e  a b a r   i n   a x i a l  and f l e x u r a l   v i b r a t i o n s .  

Under these circumstances, t h e  d i s t r i b u t e d  su r face   fo rce   can  be w r i t t e n  

i n   t h e  form 

+ 'Ax - Ay e i + €  j + f A Z k _  (46) 

where  the f i rs t  three t e r m s  r e p r e s e n t   t h e   f o r c e  components  due t o  

i .n terna1 stresses caused by t h e   a x i a l  and f l e x u r a l   v i . b r a t i o n s  (see, 

f o r  example  Reference 1 4 ,  Sec t ions  5-7 and 1 0 - 3 ) ,  t h e  f o u r t h  term i s  due 

t o  i n t e r n a l   f l u i d   p r e s s u r e   d i f f e r e n t i a l ,  and the  remaining terms a r e  

due t o  a-erodynamic effects. The term P d e n o t e s   t h e   a x i a l   f o r c e  on 

t h e  v e h i c l e   d u e   t o   i n t e r n a l  stresses and has t h e  expression 

a uX 
c ax P = E A  - ( 4 7 )  

It shou ld   be   po in t ed   ou t   t ha t   t he   l ong i tud ina l   s t i f fnes s  EAc, where 

E i s  t h e  modulus  of e l a s t i c i t y  and Ac t he   c ros s - sec t iona l  area of t h e  

casing,  and t h e  f l e x u r a l   s t i f f n e s s e s  E1 and EIc , ,  w h e r e  I and IC= 

are a r e a  moments o f   i n e r t i a   o f   t h e  case about  axes y and z through  the 

c ros s - sec t iona l   cen te r ,   t ake   i n to   accoun t   t he   ca s ing   ma te r i a l   on ly .  

Th i s   imp l i e s   t ha t   t he   unburned   p rope l l an t   posses ses   i ne r t i a   p rope r t i e s  

b u t   n o   s t r u c t u r a l   s t i f f n e s s .  

CY CY 
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Recal l ing   the   assumpt ion   tha t  ux, u u w and w are small ,  
Y '  2' Y z 

t h e   d i f f e r e n t i a l   e q u a t i o n   f o r   t h e   a x i a l   v i b r a t i o n   t a k e s   t h e   f o r m  

+ ii + 2 ( w  k - w ) + R - & R 4- w x ( w  R + wzROz)] 
X Y o z  7' OY Y o z  z OY Y OY 

( 4 8 )  

which is s u b j e c t  t o  the   boundary   condi t ions  

- 
EAc ax - px l  a t  x = b  

aux - 
EAc ax - px2 a t  x = - a  

where   the   func t ions  Pxl and Px2 are a x i a l   f o r c e s   e x e r t e d  by t h e   g a s e s  

on t h e  case a t  t h e  ends x = - a , b .  

I n  a s imi la r  manner, t h e   d i f f e r e n t i a l   e q u a t i o n   f o r   t h e   f l e x u r a l  

v i b r a t i o n   i n   t h e   x y - p l a n e  i s  

= rn { goy + iiy + 2 [wzkox - Wx (kOz + GZ) ] + G Z  (Rex + x) 

wi th   t he   boundary   cond i t ions  
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a u  
2= 0 
ax 

2 

E1cz 2 
.l 

- 
at  x = - a,b 

2 
a a u  au 

- d E % z  Y 2) + Px2 -2 = P a t x = - a  ax y2 ax 

The  first of boundary  conditions (51) indicates  that  there  are no 

bending  moments  at  the  ends  x = - arb, the  second  one  expresses  the 
fact  that  the  force  in  the  y-direction  at  the end  x = b  is  zero,  and 

the  third  one  states  that  there  may  be  a  transverse  force P at  x = -a 

due  to  a  change  in  the  flow  direction at that point. 
Y2 

Moreover,  the  differential  equation  for  the  flexural  vibration 

in  the  xz-plane  is 

with the boundary  conditions 

a L ~ z  

ax 
E1 -- = 0 2 at x = - a,b 

.. 

2 
a a uz a uZ 
ax 2) + px2 ax - pz2 - - (EIcy - - a t x = - a  

ax 
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We  note  that  the  aerodynamic  forces  are  treated  as  distributed 
1 

forces.  Concentrated  aerodynamic  forces,  such  as at the  front end of 

the  vehicle,  can  be  represented  as  distributed  by  means  of  a  spatial 

Dirac  delta  function.  The  aerodynamic  distributed  forces  are  assumed 

to cause no torques  on  the case element.  Such  torques,  if  they  exist, 

are  assumed  to  affect  only  the  rocket  rigid  body  rotations.  Although 

the  noz’zle  has  finite  length, it was  assumed,  for  simplicity,  to  be  of 

negligible  length.  In  fact  the  term  Px2  represents  the  axial  force on 

the  nozzle w a l l  from  the  gas  flow  between  the  two end  points  of  the  nozzle. 

In  a  more  refined  treatment  of  the  gas  flow,  the  exact  pressure  distri- 

bution  along  the  finite-length  nozzle  may  have  to  be  considered  (see 

Appendix) . 
The flow has  been  treated  as  if it possessed  no  viscosity. As 

a  result,  any  reactions  between  the  gases  and  the  unburned fuel are 

assumed  to  be  normal  to  the  flow.  This is  implied by  the fact that 

the velocity  is  uniform  over  the  entire  cross-sectional  area  which 

implies,  in  turn,  perfect  burning  in  the  sense  that  no  gas-dynamic 

eccentricity i s  present. ~~ The lack of gas-dynamic  eccentricity  is  en- 

sured  by  any  type of radially  symmetric flow, of which  the  uniform  flow 

is  a  special  case.  Any  torques due to gas  flow  may  result  from  en- 

gine  thrust  missalignment,  if at all.  Moreover,  the  velocity  of  the 

flow  relative to the  body  is  assumed  to  have  only  one  component,  namely 

along the x-axis.  Although,  due  to  the  transverse  elastic  displacements 

u  and cz, there  are  velocity  components  vau /ax and  vauz/ax  in  the 

y-  and  z-directions,  respectively,  the  terms  involved  are  assumed  to 

be small  and,  therefore,  ignored.  Several  special  cases,  requiring 

Y Y 

. further  assumptions,  are  discussed  in  the  next  section. 
- 
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6. Axially " Symmetric,  Spinning  Rocket  in  Vacuum. 8 

Our  interest  lies  in  demonstrating  certain  vibrational  character- 

istics  of  the  xocket  casing  during  the  powered  flight,  that  is  to  say 

when  the  mass  varies  with  time. To study  this  problem,  it  will  be 

necessary  to  make  certain  assumptions  which  preserve  a  fair  degree  of 

approximation  and  yet  simplify  the  problem  considerably.  Since  for  a 

solid-fuel  rocket  the  powered  flight  lasts  only  a  few  seconds,  it  is 

reasonable  to  assume  that  during  the  initial  moments  of  the  flight  the 

aerodynamic  forces  are  negligible.  We  shall  further  assume  that  the 

engine  thrust  makes  a  zero  angle  with  the  longitudinal  axis, so that 

no  torques  are  acting on the  vehicle.  Moreover,  the  mass  of  the  rocket 

is  considered  to  be  uniformly  distributed  and  to  remain so during  burning. 

Under  these  circumstances,  the  vehicle  mass  center  will  lie at the half-. 

way  point  between  the  rocket  ends,  b = a = L/2 ,  at all  times. 

We  shall  explore  the  case  in  which  the  unperturbed  motion of the 

rocket  consists  of  vertical  upright  flight  in  the  axial  direction  and 

of spin  about  the  longitudinal  axis  at  the  constant  angular  velocity w.  

This  motion  is  consistent  with  the  assumption of no  torques  on  the  ve- 

hicle,  in  which  case  the  rotational  motion 

w = .  w = constant , w = w = 0 
X Y Z ( 5 4 )  

satisfies  the  moment  equations,  Eqs. (Il), identically. 

For  unperturbed  translational  motion,  two  components  of the force 

equations  of  motion,  Eq. (lo), vanish  identically  and  only  the  equation 

for  the  longitudinal  direction  remains.  Moreover,  it is customary  to 

assume  that  the  internal  gas  flow  is  steady so that,  in  view of the  fact 

that  in  vacuum pa = 0, this  component  has  the  form 
.. 

peAe 4- 1. I ve - Mg = MROx ( 5 5 )  
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where I k I is  the rate of mass  decrease  of  the  entire  rocket  and  v 
the  exhaust  velocity  of  the  hot  gases.  But Ik 1 is  assumed  to  be  con- 
stant  in  time,  from  which it follows  that  the  solution  of  Eq. (55) has 

the form 

e 

where E.Io.is the  vehicle  initial  mass. The remaining  two  velocity cornpo- 

nents  are  zero, k - - koz = 0. In  the  followin9  we  shall  regard  the 

rigid  body  motion  as  known  in  time. 
OY 

In  view  of  the  above  assumptions  and  results,  the  differential 

equation  for  the  axial  vibration,  Eq. ( 4 8 ) ,  becomes 

 EA^ a -) a uX -  PA^) a - mg - =(v a 2  mf) =- m(Rox+iix) .. 
ax  ax ( 5 7 )  

which  is  subject t o  the  boundary  conditions 

- 
EAc ax - pxl at x = 'L/2 

a Ux 
EAc ax - px2 - at x = - L/2 

At this  point we postpone  the  discussion of the  equations  for  the 

transverse  vibration  and  turn oux attention  to  the  internal  gas  flow, 

which  is  the  problem  of  a  steady,  adiabatic  flow  in  a  channel  of  uni- 

form  cross-sectional  area. The  problem is  unusual in  the  sense  that 

mass  is  continuously  added  to  the flow at constant  enthalpy  and at 

negligible  kinetic  energy.  An  exact  solution of the  internal flow pro- 

blem is extremely  difficult  and  forms t'ne subject  of  a  separate  inves- 

- tigation,  (see  Reference 10). The  assumption  of  zero  viscosity  implies 
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t h  .a t  t h  .ere a r  e n  o t  .angent ia l   forces   act ing  between t h e  unburned f u e l  

and the   f lowing   gases  so tha t   t he   equa t ion   o f   mo t ion   fo r   t he   gas   a lone  

can   be   separa ted   in   , the  form 

which is  s u b j e c t  t o  t h e   c o n t i n u i t y   e q u a t i o n ,  E q .  ( 1 8 ) .  For  uniform 

burning, Eq .  (18)  y i e l d s   t h e   r e l a t i o n  

where mop = -A = cons tan t  i s  the uniform rate  of mass burn ing   per   un i t  

length,   in   which mo = MO/L i s  t h e   i n i t i a l   d i s t r i b u t e d  mass of t h e  rocke t .  

I t  t u r n s   o u t   t h a t ,  as far  as the   gas   f l ow i s  c o n c e r n e d ,   t h e   r i g h t   s i d e  

of E q .  ( 5 9 )  i s  n e g l i g i b l e   w i t h   t h e   r e s u l t  

which  can  be  integrated t o  y i e l d  

so t h a t  t h e  pressure   d rops  as the   gases   approach   the   nozz le .   Note   tha t  

a t  x = L/2 t h e   v e l o c i t y  i s  z e r o ,  v ( L / 2 )  = 0 ,  and t h e   p r e s s u r e  p(L/2) 

i s  t h e   s t a g n a t i o n   p r e s s u r e  (see Appendix). 

Denoting t h e  mass of t h e  case and  unburned f u e l   p e r  u n i t  l ength  

by rnc = m = m f r  regard ing  nf as small compared to mc, and  introducing 

E q s .  ( 5 5 ) ,  ( 6 0 ) ,  and (61) i n t o  Eq .  ( 5 7 ) ,  w e  ob ta in  
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which  at  the  end x = L/2  is subject to  the  boundary  conditions 

(63 

To obtain  the  exit  pressure  pe,  exit  velocity ve, and the  mass  per 

unit  length “Ae a t  the  exit, one must  analyze  the  compressible  flow 

in  the  nozzle  (see  Appendix). 1 -  I 

Returning  to  the  transverse  vibration, we conclude  that  for  axial 

symmetry, I - - Icz = IC, the  two  flexural  equations of motion  can  be 

combined  into  a  single  equation  by  introducing  the  complex  vector 
CY 

u = u   + i u z  r i=$-1 
YZ  Y 

Under  the  same  assumptions as for the  axial  vibration,  this  definition 

enables  us to combine  Eqs. (50) and  (52)  into 

whereas  the  boundary  conditions  become 
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Note  that  in  Eqs. ( 6 7 )  and ( 6 8 )  it  was assumed  that  the  flexural 

stiffness  is  uniform. 

Examining  the  differential  equations ( 6 3 )  and ( 6 7 ) ,  with  the  assoc- 

iated  boundary  conditions, we conclude  that  the  equation  for  the  axial 

elastic  motion  u  can  be  solved  independently of the  equation  for  the 

transverse  elastic  motion  u On the  other  hand, Eq. ( 6 7 )  depends on 

u  through  the  axial  force P so that we must  solve  for  the  axial  elastic 

motion  before  attempting a solution  for  the  transverse  elastic  motion. 

X 

YZ' 
X 

a. The axial  vibration  of a rocket. . .. 

The mathematical  formulation  for  the  axial  elastic  motion of the 

rocket  comprises  a  nonhomogeneous  differential  equation,  Eq. (63), to 

be  satisfied  over  the  entire  length  of  the  rocket,  and  the  boundary 

conditions, Eqs. (64) and (65). The differential  equation  possesses 

time-dependent  coefficients as t h e  d.istributed  mass mC is a function 

of time;  the  axial  stiffness  EAc  is  attributed  entirely to the  casing 

material,  hence it is  constant  in  time. In view  of  our  assumptions 

concerning  the  relative  magnitudes  of  the  various  motion  components, 

it  turns  out  that  the  axial  vibration  is  independent  not  only of the 



transverse  vibration  but  also .of the  rotation w about  the  longitudinal 

axis. 

A solution of the  boundary-value  problem,  Eqs. (63), ( 6 4 ) ,  and 

(651, is  possible  by  means  of  the  modal  analysis,  provided  the  mass 

density  m  is  constant.  This,  of  course,  is  not  the  case  but let us 

assume  for  the  moment  that it is. The modal  analysis  .amounts t o  solv- 

ing  the  eigenvalue  problem  associated  with  the  constant-mass  system, 

obtain  the  so-called  normal  modes,  and  express the system  response  as 

a  superposition  of  the  normal  modes  multiplied  by  corresponding  gen- 

eralized  coordinates;  such  a  solution  is  referred  to  as  normal-mode 

vibration.  Because  the  actual  boundary-value  problem  possesses  time- 

dependent  coefficients,  however,  no  normal-mode  vibration  is  possible. 

Nevertheless,  by  virtue  of  the  uniform-burning  assumption, it turns 

out that  a  procedure  based  on  the  normal-mode  approach  can  be  used 

here  to  obtain a solution.  But,  because  the  normal  modes  imply  a  phy- 

sical  behavior  which  the  actual  system  does  not  possess, we shall  re- 

gard  the  solution  as  a  superposition of eigenfunctions  associated  with 

the  constant-mass  system,  rather  than a superposition of normal  modes. 

C 

Instead  of  working  with  a  boundary-value  problem  consisting of 

a  nonhomogeneous  differential  equation  with  nonhomogeneous  boundary 

conditions,  it  will  prove  more  convenient to  transform the problem 

into  another  one  defined  by  a  nonhomogeneous  differential  equation  with 

homogeneous  boundary  conditions. To this  end we introduce  the  trans- 

formation 

* 

ux(x,t) = w ( x , t )  + P1gl (x) f P2g2 (x) (69) 
~~~~ 

* For  a discussiolz of this  type  of  transformations,  see t he  text by 
L. Meirovitch  (Reference 14), Section 7-14. - 



where P1 = Pxl and P2 = Px2  are  the  same  functions as in  boundary 

conditicjns  (64)  and  (65) , And  g1  and g2  are so chosen as to render 

the  boundary  CGnditions  in  terms of w(x,t)  homogeneous.  Introducing 

Eq. (69)  into E q s .  ( 6 4 )  and  (651,  and  insisting  that  the  boundary  con- 

ditions  in  terms  of w have  the  form 

we are led  to  the  following  relations 

EAc 2 I = 0 , EAc 
x=L/2 dg2 I x=-L/2 = 1  

It is not diffic-t to  verify  that  expressions 

where  h(x-xo)  is  a  unit  step  function  applied at x = xo, satisfy  con- 

ditions  (71) . Integrating  Eqs.  (72) , and  substituting  the  result  into 
Eq. (691, we obtain 

p1 (x--) L h ( x - ~ )  L + ---(x+~) p2 1-h (x+$)] (73) ux(x,t) = w(x,t) + - L 
EAC 2 EAC 

Introduction  of Eq. (73)  into  (63)  yields the  differential  equation 

in terms  of w 

2 
  EA^ + m G = p16 ( x - z )  L - p26 ( x + z )  L - L(pe~e 1 + V ~ M ~ B )  (74) 2 C ax 

. 
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provided P1 and P2 are  constant,  which  turns out to be the caz-L €or 

steady  flow.  Equation  (74)  is  subject  to  the  homogeneous  boundary 

conditions ( 7 0 ) .  

To solve  the  boundary-value  problem  defined  by  Eqs.  (74)  and 

( 7 0 ) ,  we  consider  first  the  eigenvalue  problem  consisting  of  the  diff- 

erential  equation 

EAc@" + R mO+ = 0 2 
( 7 5 )  

over  the  domain -L/2 <x <L/2  and  the  boundary  conditions 

@ ' (L/2) = (p ' (-L/2) = 0 (76) 

where  primes  denote  differentiations  with  respect  to x. The eigenvalue 

problem,  Eqs.  (75)  and  (76),  corresponds  to  the  axial  vibration of  a 

uniform,  constant  mass  bar  with  both  ends  unrestrained. The solution 

of  the  problem  can be shown to consist  of  the  denumberably  infinite 

set  of  eigenfunctions  (see,  for  example,  Reference 14, pp.  151-154) 

Jz+ (-1) r/2 cos rax/L , r = 2,4,6,-- 

and  the  eigenvalues 

"r = rn ,/= I r = 1,2,3,--- 

The eigenfunctions  are  orthogonal  to  each  other  and,  in  addition,  they 

are  normalized so as to satisfy  the  relation 
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where Srs is  the  Kronecker  delta. The eigenfunction  corresponding 

to  r = 0 represents  the  rigid-body  mode + o  = ,/ l/moL  and  the  associ- 
ated  eigenvalue  is  zero, G o  = 0 , as  is to be  expected for a semi-defic- 
ite  system.  It  is  easy to see also that+0 is  orthogonal tcI the eiger.- 

functions + (s=l,2,3,---). 
S 

The solu,tion of Eq. (74)  is  assumed  in  the  form 

03 

w(x,t) = x +,(x) q r W  ( 8 0 )  

r=l 

where  q  are  the  generalized  coordinates  and  the  functions - satisfy r ‘r 
Eq. (75).  Introducing Eq. ( 8 0 )  into  (741,  multiplying  both  side of 

the  result by + s ( x ) ,  integrating  over  the  entire  domain, ar.d using 3q. 

( 7 9 ) ,  we obtain  the  set of uncoupled  ordinary  differential  2quatior.s 

with  time-dependent  coefficients 

(1 - Bt)qr + Qrq, - Q, I r = l r 2 r 3 r ” -  2 -  (81) 

where $ was  defined  previously  and 

play the  role of generalized  forces.  Letting  the  initial  conditior-s 

be 
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of  Frobenius.  Practical  reasons,  however,  render  such  a  solution  in- 

tractable. The  situation  is  considerably  improved  if,  through  damping, 

the  solution  for  the  axial  displacement  reaches  a  steady-state  condition 

in  which  the  axial  force P is no longer  time  dependent. We shall  attempt: 

a  solution  for  the  transverse  vibration  under  these  circumstances. 

Ignoring  the  term  containing  the  axial  elastic  acceleration  in 
X 

Eq. (63) , and  considering  the  boundary  conditions ( 6 4 )  , the  axial  force 
can be shown  to  have  the  expEession 

Upon  introducing Eq. (86) into  Eq. (67) we obtain  a  homogeneous  partial 

differential  equation  with  time-dependent  coefficients  enbering  through 

the  mass m which  is a known  function o f  time.  Equation (67) is  subject 

to the  homogeneous  boundary  conditions (68). A solution  of  the  corr- 

esponding  boundary-value  problem  can,  likewise, be attempted  in  terms 

of the  eigenfunctions of the  associated  uniform,  constant-mass  bar  in 

transverse  vibration  but,  by  contrast,  this  time no transformation is 

necessary as  the  boundary  conditions  are  already  in  homogeneous  form. 

Let us consider  the  eigenvalue  problem  comprising  the  differential 

equation 

and  the  boundary  conditions 

$I1 = $ = 0 at x = -L/2 ,L/2 
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The s o l u t i o n  of t h i s  problem i s  g iven   i n   Re fe rence14 ,   Sec t ions  5-10 

and 10-5. U s i n g   t h e   r e s u l t s  Cram t h e r e ,  w e  can w r i t e  t h e   s o l u t i o n   o f  

Eq. ( 6 7 ) ,  wi th  P given  by Eq. ( 8 6 ) ,   i n   t h e   f o r m  

where $r (r = I, 2,3 r - - )  a r e  the s o l u t i o n s  of the eigenvalue  problem, 

Eqs. ( 8 7 )  and (881,  and rl a r e   a s soc ia t ed   gene ra l i zed   coord ina te s ,   wh ich  

i n  t h i s  case are complex. In t roducing  Eq. ( 8 9 )   i n t o  ( 6 7 ) ,  mul t ip ly ing  
r 

t h e   r e s u l t  by $,, and   i n t eg ra t ing   ove r   t he   domain ,  w e  o b t a i n  

where cons ide ra t ion   has   been   g iven  to Eq. (87)  and the fact  t h a t  the  

e igen func t ions  are or thogonal .  The c o e f f i c i e n t s  krs  have  the  form 

f- L/2 

( 9 1 )  

by v i r t u e  or' t h e  Tact t h a t  u s a t i s f i e s . b o u n d a r y   c o n d i t i o n s  ( 6 8 ) ,  as 

can   be   seen   in   Reference  i 4  (page   447) .   In   f ac t   f rom t h e  s a m e  sou rce  

(see pages  450-451), we can write the c o e f f i c i e n t s   f o r  r = s 

YZ 
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whereas  for  r # s we obtain z 

Equations (90) constitute  an  infinite  set  of  coupled  ordinary 

differential  equations  with  time-dependent  coefficients;  the  coupling 

enters  through  the  coefficients  krs,  r # s .  But for large  values of 

r  and s the  Coefficients  for  which  r # s become  increasingly  small 

compared  to  the  ones  for  which  r = s. This  is  equivalent  to  the  un- 

coupling  of  the  equations  corresponding  to  high  values o€ r  from  the 

ones  corresponding  to  low  values  of r so that we can  limit  the set (90) 

to the  first  n  equations  and  truncate  the  series  in  these  equations 

accordingly.  The  resultj-ng  n  equations  can be  written  in  the  matrix 

form 

I where { n ]  is  an  n x 1 column  matrix  and [k 1 is  the  n x n  symmetric  matrix 
of the  coefficients  krs(r,s = 1,2,--- ,n) . It  turns  out  that  the  set  of 

n equations, Eq. ( 9 4 ) ,  can  be  uncoupled by means  of  a  linear  transformation. 

To this  end, we ccnsider  the,eigenvalue  problem  associated  with  the 

symmetric  matrix [Jc ] in  the  form 



where I Z ]  is  the  modai  matrix  associated  with  Ikland E Y J  is  the  cor- 

responding  diagonal  matrix  of  the  eigenvalues. It can  be  shown  (see 

Reference14,  Section 4-8) that  the  modal  matrix  possesses  the  ortho- 

gonality  property  and,  if  also  normalized, it satisfies  the  relation 

where [ Z  IT is  the  transpose of [ Z  1 and [I 1 is the  identity  matrix. 
Next we introduce  the  linear  transformation 

into Eq.  (94),  premultiply  thrGughout the resulting  equation  by LZ] , 
recall Eq. (96) , and  obtain 

T 

where,  from E q s .  (95)  and  (96), we substituted [ z ] ~ [ ~ ] I z  1 = ~ Y J .  

Equation  (98 ) represents a set of  n  uncoupled  equations  of  the  form 

in  which we substituted  m/mo 1- B t  on  the  assumption  that  mf  is  small 

relative  to mc. 

Through a change of the  independent  variable, E q s .  (99) can be 

brough  into  a  form  which  lends  itself  to  a  closed-form  solution. To show 

this, we introduce  the  transformation o2 = 1 - B t  leading  to 

1 4iwo d<s 4 2 2  (; 1- -) + "p(ys - w  o ) G S  = 0 , s = 1,2,-" 
B -  
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It  is  not  difficult  to  show  that  the  general  solution  of  Eqs. (100) is . 

where  the  constants  c  and cs2 depend on the  initial  conditions. sl 
Assuming  the  initial  conditions. 

solution  (101)  becomes 

(103) 

We note that  the.  inikia1  conditions  (102)  are  related  to  the  initial 

transverse  displacement  and  velocity of the  rocket.  The  second of E q s .  

(102) implies  that  the  initial  transverse  velocity  is  zero. On the  other 

hand,  the  quantities cs0 are  related  to  the  initial  transverse  displacement 

where  the  sth  element of the  matrix I n o )  has  the  form 

nso  = n s ( 0 )  = \ L’2 mo uyzo (x) +s (x) dx, s = 1,2 ,--I rn (106) 
J -L/2 

This  completes  the  formal  solution of the  transverse  vibration  problem. , .  
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' 7. Numerical  Results 

The  solution  for  the  rigid-body  motion  and  the one for  the  axial 

and  transverse  vibrations  have  been  evaluated  numerically on an IBM 

7040 computer. The  data  used,  taken to  represent  a  typical  solid- 

fuel  sounding  rokket, is as  follows 

Pe = 0 , v = 8,290  ft  sec 
-1 

e , L = 100 in 

m  g = 4.25  lb  in , m g = 0.5 , 1.57, 3.0 lb in-' sec 

E = 30 x l o 6  lb  in-2,  Ac = 7.53 in , IC = 93.00  in 

-1 
0 

-1 
C 

2 4 

AfO = 36.4 in I pL/2 = 2,000  lb  in-2 , w = 10, 20  rad  sec 2 -1 

The initial  conditions  have  the  form 

u  (x,O) = [ A(cos - +x - -1 +  sin - - - 6x ) ] ft 2 2 +x 
L Y L +  +L 

where A and B are coefficients  measured  in  feet.  We  note  that,  depend- 

ing on these  coefficienzs,  u  (x,O)  can be made to resemble  approximately 

the  first or the  second  eiqenfunction  of  the  constant-mass  system.  Sev- 

eral  combinations  of  A  and B have  been  explored. 

Y 

Figure 4 shows  the  rigid-body  motion  in  the  longitudinal  direction 

for  three  different  burning  rates.  Clearly,  for  larger  burning  rates 

the  rocket  climbs  faster. 

Figures  5  through 8 show  the  axial  and  transverse  elastic  dis- 

placements f o r  selected  times. The plots  are  for  various  burning  rates 

and  spin  velocities. tie note  from  Figures  5a  and  6a  that  in  the 

initial  stages of the  flight  the  burning  rate  mcg  affects  the  axial  dis- 

placement  u  to a much  larger  extent  than it affects  the  transverse X 
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. 
displacements  u  and  uz.  The  explanation  is  that  the  mass  rate  of 

change  has  an  immediate  effect  on  the  axial  force  and,  as  soon  as  the 

pressure  has  built  up  in  the  'combustion  chamber,  the  axial  tension  be- 

gins  to  produce  an  elongation of the  missile  case.  The  rate of burning 

affects  also-  the  transverse  displacements,  but  this  effect  takes  Innger 

to  make  itself  felt,  as  can  be  seen  from  Figures 5b and  6b.  Although 

the  displacements  ux,  u  and  uz  are  oscillatory  in  nature,  they  do  not 

represent  normal  mode  vibration  (in  the  commonly  accepted  sense)  by  any 

means,  as  both  the  amplitude  and  period  of  oscillation  depend  on  the 

burning  rate  and on time. 

Y 

Y' 

The'rocket spin  velocity'w  has  no  effect  whatsoever  on  the  axial 

vibration  but  it  does  have  an  effect on.the transverse  vibrations. 

The term e represents  a  complex  vector  of  unit  magnitude,  rotating 

in  the  negative  sense  with  angular  velocity w.  With  regard to the 

components  of Eq. (1031, the  term e-iwt [ 2iw Yl(as) + as Y o  ( a s ) ]  can 

be  interpreted  as  a  rotatlng  vector  r1  e cpl) , where  r1 = 

-iwt 

-i(wt - 

1 4  w 2 2  yl(aS) ' +  a: Y: ( a s ) ]  and 'pl = tan -1 [ 2w YICas)/as Yo(aS)]. 

A similar  interpretation  can  be  given  to  the  term e-iwt [ 2 i ~  J1 (as) 

+ as Jo ( a s ) ]  . Hence,  the  effect  of w is to rotate  both  components  of 

+he transverse  vibration  cs(t)  with  the  angular  velocity w with  respect 

to  the  body  axes  but  with  different  phase  angles.  Of  course,  the  two 

components  have  different  time-dependent  amplitudes  and  periods.  Figures 

7a  through  8b  show  plots  of  the  transverse  displacements €or various 

spin  rates. 

As expected,  the  rocket  undergoes  an  axial  displacement ux regard- 

less  whether  it  was  subjected  to  an  initial  displacement  in  the  axial s 

direction  or  not.  By  contrast,  under  the  assumptions of  zero  external . 
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gransverse  forces  and  reactive  transverse  forces at the  nozzle,  the 

displacements u and  uz are entirely  dependent on the  transverse  initial 

conditions.  In  fact,  the  response  persists  on  alternating  between  the 

first  and  second  eigenfunction  of  the  constant-mass  system.  This  can 

be  easily  explained  by  the  fact  that  the  initial  transverse  displace- 

ment  is  a  combination  of  two  functions  resembling  the  first  two  eigen- 

functions  in  question.  Koreover,  the  assumption  that  the  mass  remains 

uniformly  distributed  throughout  burning  tends  to  eliminate  the  other 

eigenfunctions  from  the  solutions. No tendency  of  the  amplitudes  to 

increase  with  time  is  detected.  This  is  true  for  a  relatively  large 

range  of  spin ra.tes. Sioce  the  effect of the  spin  rate  was  not  found 

to be  significant,  response  curves  for  only  two  values  of w are  reported. 

Y 

8. Summary  and  Conclusions 

In  the  first  part of this  paper  (Sections 2 through 5 )  a  new  and 

general  formulation  of  the  dynamical  problems  associated  with  the  powered 

flight  of a flexible,  variable-mass  rocket  is  presented.  The  formul- 

ation  is  more  complete  than  any  of  the  existing  ones,  and it includes  in 

one  unifying  treatment  many  effects  treated  heretofore  separately.  QuFte 

often it is  difftcult  to  justify  separating  these  effects on  physical 

grounds,  and  this  seems to be  the  case  especially  with  the  vehicle  flex- 

ibility  and  mass  variation, at least in the  case  of  rapid  mass  variation. 

The mathematical  formulation is reduced  to six  ordinary  differential 

equations,  for  three  rigid-body  translations  and  three  rigid-body  ro- 

tations, as well  as  three  partial  differential  equations  with  the 

corresponding  boundary  conditions,  for  one  langitudinal  and two trans- 

verse  elastic  displacements. The  equations  are  nonlinear  and  possess 
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time-dependent  coefficients  due  to  the  mass  variation.  The  state of the 

art  does  not  permit  a  closed-form  solution  of  the  complete  equations. 

We  have  considerable  interest  in  the  vibrational  characteristics 

of  the  vehicle  during  the  powered  flight. To obtain  an  analytical 

solution  revealing  these  characteristics,  certain  simplifying  assump- 

tions  reflecting  reasonably  well  the  physical  picture  are  made.  In 

the  second  part of the  paper,  namely  in  Section ~~ 6, such  solutions  are 

obtained. We  first  assume  in  that  section  that  the  forces  and  torques 

are not affected  by  the  elastic  displacements.  Under  this  assumption, 

the  rigid-body  motion  can  be  solved  independently  of  the  elastic  motion. 

The  equations  for  the  rigid-body  reduce  to  the  familiar  case of a six- 

degree-of-freedom  rigid  body,  possessing  variable  mass. The aerodynamic 

forces  are  assumed  to  be  sufficiently  small  during  the first  instants 

of the  f1igh.k  that  they can be  ignored.  If  the  mass  distribution, as 

well  as  the  rate  of  decrease of mass,  is  assumed  to  be  uniform, ,then 

the  mass  center  does not shift  relative  to  the  vehicle. As a result, 

the  equations  for  the  rigid-body  translations  and  the  ones  for  the  rigid- 

body  rotation  become  uncoupled. The terms  corresponding  to  the  rigid- 

body  solution  appear as inertia  forces  in  the  equations  €or  the  elastic 

displacements. 

If  the  rocket  travels  vertically  upward  with  a  given  spin,  and 

zero  angle  between  the  engine  axis  and  the  vehicle  axis,  then  the  rigid- 

body  motion  reduces  to  pure  translation  in  the  axial  direction  and  pure 

spin  at a constant  rate  about  the  longitudinal  axis.  For  zero  viscosity, 

the  equation  for  the  internal  gas  flow  can  be  separated  from  the  equa- 

tion  for  the  longitudinal  elastic  displacement.  The  gas  flow  problem - 
is one of a steady  adiabatic  flow  in a. channel o€ uniform  cross-sectional 
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area to which  mass  is  added  continuously at constant  enthalpy  and  neg- 

ligible  kinetic  eneray. The so.l.ution of  this  problem  leads  to  the  axial 

forces at the  boundaries,  namely at the  closed  end  and  the  nozzle 

end. We note  that  these  forces  induce  a  tensile  axial  force  in  the 

vehicle. It turns  out  that  the  equation  for  the  longitudinal  motion 

can  be  solved  independently  of  the  transverse  motion. The boundary- 

value  problem  for  this  comprises  a  nonhomogeneous  differential  equation 

with  nonhomogeneous  boundary  conditions.  Through  a  change  of  the  de- 

pendent  variable,  the  problem  is  reduced to one  defined  by  a  nonhomogen- 

eous  differential  equation  with  homogeneous  boundary  conditions. A 

solution  of  this  problem  is  obtained  in  the  form  of  an  infinite  series 

of eigenfunctions,  associated  with  the  constant-mass  missile  free at 

both  ends,  multiplied by time-dependent  generalized  coordinates. A 

procedure  resembling  the  modal  analysis  leads to a  set  of  uncoupled 

differential  equations  whose  solutions  involve  Bessel  functions of 

time-dependent  argument  multiplied  by  time-dependent  coefficients.  The 

arguments  are  the  counterpart  of  the  natural  frequencies  for  the  constant- 

mass  system. It is  clear  from  this  analysis  that  this  is  by  no  means 

normal-mode  vibration,  which  is  generally  identified  with  constant  coef- 

ficients  (indicating  the  degree  of  participation  of  each  mode in  the 

response)  and  constant  natural  frequencies. 

For  axial symxtetry the  equations  for  the  transverse  vibrations  can 

be  combined  into cne equation  by  .using  a  complex  vector to represent  the 

two  orthogonal-  components of  displacement.  This  equation  also  can  be 

solved  by  a  procedure  similar to the  modal  analysis  and  analogous  con- 

clusions  concerning  the  normal-mode  vibration  concept  can  be  drawn for 

the  transverse  vibration as for  the  longitudinal  vibration.  By  contrast, 
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however,  the  equations  do  not  uncouple  inunediately.  Fortunately,  trun- 

cating  the  series  solution,  and  using  a  linear  transformation,  it  is 

possible  to  derive  a  set  of  uncoupled  ordinary  differential  equations, 

the  solution of which  is  readily  obtained. 

In  conclusion,  the  closed-form  solutions  for  the  axial  and  trans- 

verse  vibrations  of  the  rocket  show  clearly  that  normal-mode  vibration, 

in the  commonly  accepted  sense,  does  not  exist  for  variable-mass  systems. 

A commonly  used  method of treating  such  systems  is  the  so-called  "time- 

slice"  method,  according  to  which  the  mass  can  be  regarded  instantane- 

ously  as  constant  thus  permitting  a  normal-mode  solution.  The  closed- 

form  solution  obtained  here  can  be  used  to  check  the  measure  of  validity 

of  the  time-slice  approach,  especially  in  the  case  of  systems  with  rapid 

mass  variation  such  as  solid-fuel  rockets.  Moreover, we call  attention 

to  the  fact  that,  in  the  case  of  solid-fuel  rockets,  at  least,  the  engine 

thrust  gives  rise  to  a  tensile  axial  force  in  the  missile, as a  result 

of  the  internal  pressure  in  the  combustion  chamber.  This  effect  tends 

to  reduce  the  transverse  deformation  as  opposed  to  the  unstabilizing 

effect  of  a  compressive  force,  which  would  obtain  if  the  engine  thrust 

was  assumed  to  be  concentrated  at  the  vehicle  aft  end. 

It  must  be  stressed  that  the  formulation is of  a  very  general 

nature  and  is  applicable  to  a  large  number  of  problems  in  rocket  dynamics 

The two problems  solved,  namely  the  longitudinal  and  transverse  vi- 

brations  under  pure  axial  rigid-body  translation, should be  regarded 

as special  cases  in  which  closed-form  solutions  are  possible. No 

closed-form  solution  can  be  expected  for  the  general  case  and  a  skrictly 

numerical  solution  by  means  of  a  high-speed  computer  cannot  be  avoided. 
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APPENDIX - Calcu la t ion  of the  Engine  Thrust ,  

The purpose  of a nozz le  i s  t o   c o n v e r t  the enthalpy of the  f lowin9 

g a s   i n t o   k i n e t i c   e n e r g y   i n   a n   e f f i c i e n t  manner w h i l e ,  a t  t h e  same t i m e ,  

r e s t r i c t i n g  t h e  escape  of t h e  gas  to a ra te  s u i t a b l e   f o r   t h e   p r o p e l l a n t  

r e a c t i o n   i n s i d e  the combustion  chamber. W e  s h a l l  assume t h a t   t h e   n o z z l s  

under   cons idera t ion  i s  convergent -d ivergent ,   des igned   to   a l low  an   i sen-  

t rop ic   expans ion  t o  an  ambient  pressure less t h a n  c r i t i c a l .  I n  t h e  

convergent   port ion of t he   nozz le ,   be fo re   t he   t h roa t ,   t he   f l ow i s  sub-  

s o n i c ,   r e a c h i n g   s o n i c   l e v e l   a t   t h e   t h r o a t   s e c t i o n ,   a t   w h i c h   p o i n t  t h e  

flow p r o p e r t i e s   a r e   r e f e r r e d   t o   a s   c r i t i c a l ,  and  becoming  supersonic 

i n   t h e   d i v e r g e n t   p o r t i o n  after the   t h roa t .   A l though   l o s ses  may occur 

i n  t h e  nozz le ,   they  are assumed t o  be  small  so t h a t   t h e   a n a l y s i s  i s  

based   on   the   equat ions   for   one-d imcns icna l   i sen t ropic   s teady   f low of 

a compress ib l e   pe r f ec t   gas .  

L e t  us   cons ider  the one-dimensional   isentropic  flow of Figure 

A1 and  assume t h a t  t h e  s tagnat ion   condi t ions ,   denoted  bk t h e  s u b s c r i p t  

0, a r e  known. Under these circumstances,  w e  may write t h e   e q u a t i o n s  

governing  the  f low  as  follows: 

F i r s t   t h e   f l o w  must s a t i s f y   t h e  f i r s t  law  thermodynzmics. 

Cons ide r ing   t he   con t ro l  volume shown i n  F igure  A l ,  and denot ing   the  

e n t h a l p y   p e r   u n i t  mass by 11, t h i s  l a w  can  be stated 

Assuming t h a t   t h e r e  i s  EO f r i c t i o n  or heat transfer p resen t ,  t h e  

second  law  of  thermodynamics becomes simply 
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o r   t h e   e n t r o p y  s i s  cons t an t ,  as implied by t h e  name o f   t he   t ype  of 

f low  under   considerat ion.  

The fiow must a l s o   s a t i s f y   t h e   c o u n t i n u i t y   e q u a t i o n .   S i n c e   t h e r e  

i s  no m a s s  add i t ion   w i th in   t he   nozz le ,  w e  must  have 

PIAlvl = P2A2v2 = cons tan t  (A3 

where   t he   f l ow  p rope r t i e s  a t  s t a t i o n s  1 and 2 are denoted by t h e   c o r -  

responding   subscr ip ts .  

S i m i l a r l y   t h e  f l o w  must s a t i s f y   t h e  momentum equat ion.   Denot ing 

t h e   f o r c e   e x e r t e d  by t h e   n o z z l e  wall on   t he   gas  by  FT, t h i s   e q u a t i o n  

' can   be   wr i t t en  

2 A v  FT = plAl - p2A2 = p A V 
2 

2 2 2 - p 1 1 1  (Ab 1 

Equations ( A l )  through ( 8 4 )  must  be  supplemented  by  the  equation 

of state which f o r  a p e r f e c t  ~ 9as has   the  fornl  

p = pRT (A5 1 

i n  which R i s  t h e   u n i v e r s a l   g a s   c o n s t a n t  and T the   t empera tu re .  

The  above r e l a t i o n s   c a n  he used t o   d e r i v e   e x p r e s s i o n s   f o r   t h e  

p re s su re ,   dens i ty ,  etc. ,  a t  any   po in t   a long   the   nozz le .   For  a. p e r f e c t  

gas   the  speed  of   sound is g iven  by 

c = (kRT) 1/2 

where 

k = c / c  
P V  

i n  which c ana c are t h e  spec5.f.i.c hea t s .  
P V 

(A7 1 

Then t h e   f o l l o w i n g   r e l a t i o n s  
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can  be shown to hold t rue .*  

" T -  - 1 
'0 1 + [ (k -1 )   / 2 ]  M2 

e= 1 
"0 [l + [ ( k - 1 ) / 2 ]  M 2 ] l / ( k - l )  

where M = v/c i s  the Mach number.  Moreover, t h e  c ros s - sec t iona l   a r ea  

A a t  any  point  i s  r e l a t e d   t o   t h e   c r o s s - s e c t i o n a l   a r e a  A, a t  the t h r o a t  

hY 

where 

i s  the m a s s  f l ow p e r   u n i t   a r e a   a t  any p o i n t  and 

i s  t h e  mass flow p e r   u n i t   a r e a   a t   t h e   t h r o a t .  

Equations ( A 8 )  through (A13) are s u f f i c i e n t   t o   d e t e r m i n e   t h e   i s e n -  

t r o p i c   f l o w   i n  t h e  nozz le   p rovided   the   s tagnat ion   condi t ions   a re  known. 

W e  are i n t e r e s t e d   p r i m a r i l y  i n  the f low  condi t ions  a t  t h e   n o z z l e   e x i t .  

For a g iven   rocke t   des ign  the c r o s s - s e c t i o n a l   a r e a s  Ae and A, may be 

* See Reference 12, Sect ion  13-5. 
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r ega rded   a s  known. S ince  I., i s  a l s o  a known q u a n t i t y ,  we can use  Eq. 

( A l l )  and   ob ta in   the  Mach number Me a t  the e x i t .   I n t r o d u c i n g   t h i s   v a l u e  

i n t o  Eq. (A9) we c a n   d e t e r m i n e   t h e   e x i t   p r e s s u r e  p which  enables us  

to w r i t e  t h e   e x p r e s s i o n   f o r   r o c k e t   t h r u s t  
e' 

FT - - peAe + p A v2 = peAe (1 + kMe) 2 
e e e  (A14 1 

f o r   f l i g h t   i n  vacuum. I f   t h e   r o c k e t   o p e r a t e s  i n  the   lower   f r inges   o f  

the   a tmosphere ,   then   the  t e r m  paAe, where  pa i s  the   a tmospher ic   p ressure ,  

m u s t   b e   s u b t r a c t e d   f r o m   t h e   r i g h t   s i d e   o f  Eq.  (A14). 

I n   t h e  above   ana lys i s ,  we have  assumed t h a t   t h e   s t a g n a t i o n  con- 

d i t i o n s  are known. T h i s   a s s u m p t i o n   n e c e s s i t a t e s   f u r t h e r   s c r u t i n y .  

The  Stagnat ion  condi t ions are determined  by events  occurr ing  upstream 

o f   t he   nozz le .  The  flow i n   t h e  combustion  chamber may be regarded as 

a s t e a d y ,   a d i a b a t i c   f l o w   i n  a channel   of   uniform  cross-sect ional  area 

wi th  m a s s  a d d i t i o n  a t  cons tan t   en tha lpy ,   and  a t  n e g l i g i b l e   k i n e t i c  

energy.  The  flow i s  n o t  i s e n t r o p i c   a n d   t h e   s t a g n a t i o n   c o n d i t i o n s  are 

n o t  c o n s t a n t   b u t   d e c r e a s i n g  as t h e   n o z z l e  i s  approached.  This  problem 

is d i s c u s s e d   i n   d e t a i l   i n   R e f e r e n c e  1 0 .  The   conclus ion   tha t  can be  

reached i s  t h a t   f o r  a Mach number less than  0 . 4  i n   t he   combus t ion  chamber 

t h e   d r o p   i n   t h e   s t a g n a t i o n   p r e s s u r e  may n o t   b e   s i g n i f i c a n t .  Hence, 

w e  s h a l l  assume t h a t   t h e   s t a g n a t i o n   p r e s s u r e  as well as the   r ema in ing  

s t a g n a t i o n   c o n d i t i o n s   o c c u r r i n g  a t  the  fore   end  of   the  combust ion  chamber  

are e q u a l l y   a p p l i c a b l e   t o   t h e   n o z z l e .   I n  a more r e f i n e d   a n a l y s i s   o f  

t he   gas   f l ow  th i s   a s sumpt ion  may have   t o   be   r ev i sed .  
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